11,890 research outputs found

    Frequency-sweep examination for wave mode identification in multimodal ultrasonic guided wave signal

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Ultrasonic guided waves can be used to assess and monitor long elements of a structure from a single position. The greatest challenges for any guided wave system are the plethora of wave modes arising from the geometry of the structural element which propagate with a range of frequency-dependent velocities and the interpretation of these combined signals reflected by discontinuities in the structural element. In this paper, a novel signal processing technique is presented using a combination of frequency-sweep measurement, sampling rate conversion, and Fourier transform. The technique is applied to synthesized and experimental data to identify different modes in complex ultrasonic guided wave signals. It is demonstrated throughout the paper that the technique also has the capability to derive the time of flight and group velocity dispersion curve of different wave modes in field inspections. © 2014 IEEE

    MgO barrier-perpendicular magnetic tunnel junctions with CoFe/Pd multilayers and ferromagnetic insertion layers

    Full text link
    The authors studied an effect of ferromagnetic (Co20Fe60B20 or Fe) layer insertion on tunnel magnetoresistance (TMR) properties of MgO-barrier magnetic tunnel junctions (MTJs) with CoFe/Pd multilayer electrodes. TMR ratio in MTJs with CoFeB/MgO/Fe stack reached 67% at an-nealing temperature (Ta) of 200 degree C and then decreased rapidly at Ta over 250 degree C. The degradation of the TMR ratio may be related to crystallization of CoFe(B) into fcc(111) or bcc(011) texture result-ing from diffusion of B into Pd layers. MTJs which were in-situ annealed at 350oC just after depo-siting bottom CoFe/Pd multilayer showed TMR ratio of 78% by post annealing at Ta =200 degree C.Comment: 12 pages, 4 figure

    Superconducting Pairing Symmetries in Anisotropic Triangular Quantum Antiferromagnets

    Full text link
    Motivated by the recent discovery of a low temperature spin liquid phase in layered organic compound κ\kappa-(ET)2_2Cu2_2(CN)3_3 which becomes a superconductor under pressure, we examine the phase transition of Mott insulating and superconducting (SC) states in a Hubbard-Heisenberg model on an anisotropic triangular lattice. We use a renormalized mean field theory to study the Gutzwiller projected BCS wavefucntions. The half filled electron system is a Mott insulator at large on-site repulsion UU, and is a superconductor at a moderate UU. The symmetry of the SC state depends on the anisotropy, and is gapful with dx2−y2+idxyd_{x^2-y^2}+id_{xy} symmetry near the isotropic limit and is gapless with dx2−y2d_{x^2-y^2} symmetry at small anisotropy ratio.Comment: 6 pages, 5 figure

    Gossamer Superconductivity near Antiferromagnetic Mott Insulator in Layered Organic Conductors

    Get PDF
    Layered organic superconductors are on the verge of the Mott insulator. We use Gutzwiller variational method to study a Hubbard model including a spin exchange coupling term. The ground state is found to be a Gossamer superconductor at small on-site Coulomb repulsion U and an antiferromagnetic Mott insulator at large U, separated by a first order phase transition. Our theory is qualitatively consistent with major experiments reported in organic superconductors.Comment: 5 pages, 3 figure

    Learning skills : robotics technology in automotive powertrain assembly

    Full text link
    The past 40 years have seen industrial robots establish their superiority over humans in most areas of manufacturing requiring endurance or repeatability. One important application domain, however, has so far lagged behind the industry’s expectations: mechanical assembly. As fast, precise and dependable as they are, traditional industrial robots just don’t seem able to perform certain assembly operations as well as a skilled human worker. A task as simple as screwing a light bulb into a lamp socket shows why. Applying the right amount of force and turning the bulb at just the right time, at exactly the right angle, is something a human does intuitively. How can a robot be programmed to do this? For robots to successfully emulate humans on an assembly line, they need to have force-sensing capability and exhibit compliance. They must be able to direct forces and moments in a controlled way, and react to contact information. New robot force control technology from ABB shows how

    HLA-B-associated transcript 3 (Bat3)/Scythe is essential for p300-mediated acetylation of p53.

    Get PDF
    In response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion of Bat3 from human and mouse cells markedly impairs p53-mediated transactivation of its target genes Puma and p21. Although DNA damage-induced phosphorylation, stabilization, and nuclear accumulation of p53 are not significantly affected by Bat3 depletion, p53 acetylation is almost completely abolished. Bat3 forms a complex with p300, and an increased amount of Bat3 enhances the recruitment of p53 to p300 and facilitates subsequent p53 acetylation. In contrast, Bat3-depleted cells show reduced p53-p300 complex formation and decreased p53 acetylation. Furthermore, consistent with our in vitro findings, thymocytes from Bat3-deficient mice exhibit reduced induction of puma and p21, and are resistant to DNA damage-induced apoptosis in vivo. Our data indicate that Bat3 is a novel and essential regulator of p53-mediated responses to genotoxic stress, and that Bat3 controls DNA damage-induced acetylation of p53
    • …
    corecore